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Casimir (1948): Two uncharged, perfectly
conducting plates attract each other due to the
modification of the quantum vacuum fluctuations
imposed by the boundaries

   Recent experiments

 Parallel plates  Plate-sphere 

 Cantilevers
  Torsion balances  (1997)
  Atomic force microscopes 
  Micromechanical resonators  Micromechanical resonators (2001)

Static Casimir effect



Dissipative counterpart of the conservative (static) Casimir forces

Connections and applications…

 vacuum-induced mechanical dissipation
 Non contact friction Vacuum-induced mechanical dissipation

 vacuum-induced mechanical dissipation
 Motion-induced photons  Vacuum-induced heat dissipation in the 

 form of photons

Dynamical Casimir effect
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Polarizations of the EM field:

Transverse Electric (TE) Transverse Magnetic (TM)

DCE in 3D waveguides (EM field)



 Vector and scalar Hertz potentials

Representation of the physical degrees of freedom of EM field
alternative to the standard     and

Maxwell eqns  can be written in terms of two vector potentials        ,

(Lorentz gauge)

Stream

potentials

[Nisbet, 1955]

In vacuum, at points away from the sources, the electric and magnetic vector
Hertz potentials can be expressed in terms of only two scalar functions, the
so-called scalar Hertz potentials      and



Hertz potentials (cont’d)

In previous works [eg Hacyan et al (1990); Maia Neto (1994) ], the EM
degrees of freedom were described using two vector potentials
          &
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Boundary conditions: starting from the usual b.c. for a perfect mirror
In the instantaneous co-moving Lorentz frame

Hertz potentials (cont’d)

TE modes

Dirichlet b.c. along z

Neumann b.c. transv.

TM modes

generalized Neumann b.c. along z

Dirichlet b.c. transv.



Scalar Hertz potential       (Dirichlet boundary conditions along z)

Mode expansion for t<0 :

The function         satisfies Neumann b.c. 
on the lateral surfaces and 

Instantaneous basis for t >0:

Initial conditions:

Quantization - TE modes



Harmonic motion of the boundary:

Set of coupled equations for the modes:

coupling constants

Motion-induced TE photons:

Quantization - TE modes  (cont.d)

When the motion stops…



Solving the equation for modes

 Analytical treatment: Multiple Scale Analysis (MSA)

•  Parametric resonant case:

• Exponential growth of number of motion-induced photons

A naïve perturbative solution of the mode equations in powers of 
breaks down after a short amount of time, of order 

 resummation of the perturbative series

 solution valid for longer times,

•  MSA:

New time scale: 

Zero order: 

First order: 



Solving the eqns for modes (cont’d)

 Key idea of MSA: avoid secularities by imposing that any term
        in the RHS of the equations cancels out.

• Exponential growth of number of motion-induced photons

•  resonant conditions

Similar equation for 

Initial conditions:  



Solving the eqns for modes (cont’d)

Exponential growth

• Exponential growth of number of motion-induced photons

 For no inter-mode coupling [                             ]

•  (Mathiew equation)

 Similar results for finite number of coupled modes 
 It is also possible to get resonant effects for small detuning 

 Numerical treatment:
    see talk by Marcus Ruser (PM Today)



Quantization - TM modes

Scalar Hertz potential       (Neumann boundary conditions along z)

Mode expansion for t<0 :

Zero mode (independent of x)
It is irrelevant in a waveguide

The function         satisfies Dirichlet b.c. 
on the lateral surfaces and 

Instantaneous basis for t >0:

[ talk by Mazzitelli]



Quantization - TM modes (cont’d)

Set of coupled equations for the modes:

where        ,       and        are coupling constants

Motion-induced TM photons:

 Exponential growth of photons for the resonant case

 Solutions independent of the particular choice of 
 In general, the rate of growth for TM photons is larger than for TE photons 



Cavities with rectangular section

field (TE modes) :

field (TM modes) :

Spectrum:

Example: resonant case

  TE modes The fundamental TE mode is doubly degenerate:             and
and is not coupled to other modes

Growth in number of photons

  TM modes The fundamental TM mode is              and is coupled to

Growth in number of photons



Cavities with circular section

field (TE modes) :

field (TM modes) :

Spectrum:

Resonant case
  TE modes The fundamental TE mode is              and for                     it has a 

lower frequency than the fundamental TM mode. It is uncoupled

  TM modes The fundamental TM mode is              and is uncoupled

Bessel function of nth order mth positive root of 

mth root of 

Growth in number of photons

Growth in number of photons



DCE in cavities (cont’d)

Orders of magnitude
•   # of generated photons

depends on the geometry and the particular TE or TM mode

•   Amount of created photons is limited by the Q factor of the cavity

0.5

•  e.g. Cubic cavity:

Maximal dimensionless amplitude
for mechanical oscillationsVery high Q factors needed to 

produce large number of photons!

Maximal dimensionless amplitude
for mechanical oscillations

Mode

TE (1,0,1)
TE (0,1,1)
TM (1,1,0)
TM (1,1,4)

0.5
0.5
1.0
0.3

0.3Alternative experimental routes:

 MIR experiment (talks by Ruoso and Dodonov)
 Atom spectroscopy (talk by Onofrio)



TEM modes

Non-simply connected cavities

Quantization of TEM modes is equivalent to quantizing a scalar
field in 1+1 with Dirichlet boundary conditions.

Additional scalar field

       is a solution of the electrostatic
problem in transverse dimensions

Dirichlet b.c. along z  

E and B fields do not have z components



TEM modes (cont’d)

Equidistant spectrum: all modes are coupled 

Eqns for modes can be solved as before, but it is easier (due to 1+1) to use
 Moore equation [ Moore 1970]: 

Energy density [Fulling-Davies 1976]: 



TEM modes (cont’d)

# of photons
total energy



Conclusions

 Dynamical Casimir effect with full EM field inside 3D cylindrical
    waveguides of arbitrary section

 Physical degrees of freedom of the EM field treated with scalar
    Hertz potentials (TE, TM, TEM modes)

 Coupled mode equations solved analytically using Multiple Scale 
    Analysis (see M. Ruser’s talk for numerical treatments)
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